Fuzzy Set Theoretic Approach to Image Thresholding
نویسندگان
چکیده
Thresholding is a fast, popular and computationally inexpensive segmentation technique that is always critical and decisive in some image processing applications. The result of image thresholding is not always satisfactory because of the presence of noise and vagueness and ambiguity among the classes. Since the theory of fuzzy sets is a generalization of the classical set theory, it has greater flexibility to capture faithfully the various aspects of incompleteness or imperfectness in information of situation. To overcome this problem, in this paper we proposed a two-stage fuzzy set theoretic approach to image thresholding utilizing the measure of fuzziness to evaluate the fuzziness of an image and to determine an adequate threshold value. At first, images are preprocessed to reduce noise without any loss of image details by fuzzy rule-based filtering and then in the final stage a suitable threshold is determined with the help of a fuzziness measure as a criterion function. Experimental results on test images have demonstrated the effectiveness of this method.
منابع مشابه
Fuzzy Entropy Based Approach to Image Thresholding
Image thresholding plays very important role in many computer vision and image processing applications. Segmentation based on gray level histogram thresholding consists of a method that divides an image into two regions of interest; object and background. In image processing, we deal with many ambiguous situations. Fuzzy set theory is a useful mathematical tool for handling the ambiguity or unc...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملA novel intuitionistic fuzzy approach for tumour/hemorrhage detection in medical images
This study presents a novel method to detect edges that clusters, thresholds, and then detects edges of tumour/ hemorrhage region using intuitionistic fuzzy set theory. Clustering segments image into several clusters and histogram thresholding eliminates unwanted clusters that are not related to tumour/hemorrhage region. Finally, image is edge detected, where a clear boundary is obtained. Propo...
متن کاملA review on image segmentation techniques
-Many image segmentation techniques are available in the literature. Some of these techniques use only the gray level histogram, some use spatial details while others use fuzzy set theoretic approaches. Most of these techniques are not suitable for noisy environments. Some works have been done using the Markov Random Field (MRF) model which is robust to noise, but is computationally involved. N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011